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Abstract

In this dissertation entitled “Volumetric Brain MR Image Segmentation using Entropy
based Fuzzy Clustering Algorithm” an image segmentation method has been proposed
that is based on fuzzy c-means algorithm and has been modified by using Shannon
entropy to improve the robustness to the noise and intensity inhomogeneity that may
be present in a brain MR image. A very detailed comparative analysis has made with
different use cases also including a contrast with earlier methods.
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Chapter 1:

Introduction

1.1 Fuzzy image segmentation

Image segmentation is a method of segregating a digital image into various elements
that can be referred to as sets of pixels, or super-pixels. The objective of segmentation
is to clarify and/or modify the illustration of a picture into one thing that holds
additional meaningful information and is easier to research . Image segmentation is
usually applied in order to find objects and bounds (lines, curves, etc.) in pictures.
In exact terms, image segmentation is the method of assignment of a label to each
element in an image in such a way that the specified pixels with constant label share
bound characteristics.

The results of image segmentation may be a set of contours extracted from the image.
In any region each pixel bear similarity with reference to some characteristic or
computed property, like color, intensity, or texture. Adjacent regions are

considerably different with reference to the constant characteristic(s) [.

Image
Segmentation has two major goals. The initial aim being fragmenting the image into
elements for additional analysis. The subsequent intent is to carry out a change of

presentation U,

There are various techniques that have been developed for image segmentation and
overall image segmentation approaches can be divided into four categories:
thresholding, clustering, edge detection, and region extraction. Many clustering
methods are used, like the crisp clustering theme and also the fuzzy clustering theme,
each of which has its own special characteristics 2.

Fuzzy set theory, which involves the idea of partial membership described by a
membership function, fuzzy clustering (also known as soft clustering) has been widely
studied and successfully applied to a variety of applications of image segmentation

19



including pattern recognition, object detection, and medical imaging. Among the
fuzzy clustering strategies, fuzzy c-means (FCM) algorithmic rule is the most well-
liked methodology utilized in image segmentation as a result of its strong
characteristics for ambiguity and may retain abundant more information than hard
segmentation methods 2. Also, FCM clustering could show a transition zone between
clusters and reflect gradual changes in environmental parameters. This is because
fuzzy classes contain more information than discrete classes that helps to improve

analysis B,

1.2 Brain MR image segmentation

20

In brain MR (magnetic resonance) image analysis, image segmentation is commonly
used for measuring and visualizing the brain’s anatomical structures for analyzing
brain changes identifying pathological regions and for surgical planning and image
guided intervention. Any kind of abnormalities could be identified by tracking of
changes in volume, shape and regional distribution of brain tissue.

Furthermore, brain image segmentation plays an important role in clinical diagnostic
tools, treatment procedures and also 3D brain visualization for measuring the volume
of different tissues in brain such as Gray and White Matter, Thalamus, Amygdala,
Hippocampus etc. ¥. Because, some people modify the problem to a three-type tissue
classification by assuming multiple gray matter structures as one class, they usually
label the brain volumes into three main classes like White matter (WM), Grey matter
(GM), Cerebrospinal fluid (CSF) ¥. The Internet Brain Segmentation Repository
(IBSR) provided by the Center for Morphometric Analysis (CMA) at Massachusetts
General Hospital and BrainWeb, which has been collected at McConnell Brain
Imaging Centre of the Montreal Neurological Institute, McGill University are two
popular datasets generally used in this domain of research ¥,

Figure 1.1(a): 2D MR brain image Figure 1.1(b): 3D MR brain image



A 2D image can be defined as a function I (i,j) in 2D space where i =0,1,2, ..., M —
1,j=0,1,2,..,N — 1 denotes spatial coordinates. The values of the function I (i,j)
are the intensity values and typically represented by a grey value [0 — 255] in MR
of the brain . Every image consists of a finite set of image elements, called pixels in
2D-space. Each image element is uniquely specified by its intensity values and its
coordinates, (i,j) for pixels where i is image row and j is the column number ©.

A 3D image can be defined as a function I (i,j, k) in 3D space where i =
0,1,2,...M—-1, j=0,1,2,..,N—1 denotes spatial coordinates and k =
0,1,2,..,P — 1 represents each 2D image slice of the 3D image. The values (i,j) of
the function I (i,j, k) are the intensity values and typically represented by a grey
value [0 — 255] in MR of the brain whereas the k value is represented by any real
number [0 — (P — 1)] in which P is the total number of slices of 2D images in the
3D volumetric stack P!,

)
(i), k)

Figure 1.2(a): 2D image representation Figure 1.2(b): 3D image representation

As mentioned earlier in this case of brain MR image elements are typically classified
into three main tissue types: CSF, GM, WM. Most of the image segmentation
methods are focused on 2D-images while a few are focused 3D-volumes of images.

21



Chapter 2:

Literature Survey

2.1 Types of segmentation methods

22

There are a number of segmentation methods of medical images such as, MR images
used popularly in the past. Intensity thresholding, region-based segmentation, edge-
based segmentation and classification-based segmentation are such techniques which
have been used regularly for segmenting MR images 7.

The grey level histogram of the image is considered as the threshold level in Intensity
thresholding. The disadvantage of intensity thresholding method is that we need to
determine the optimal threshold also another disadvantage of intensity thresholding
method is spatial uncertainty as the pixel location information is ignored .

In the edge-based segmentation technique, interrupted or scattered contour lines are
created around an object of interest using some edge detection algorithms. Then
these contour lines joined based on some similarity criteria to detect the object of
ROI. However, these methods are computationally expensive for obtaining hole free
segmentation of the objects. The region-based segmentation methods extend the
thresholding by integrating it with connectivity by means of an intensity similarity
measure. The major objective of these above-mentioned methods is to get connected
regions based on homogeneity criteria of neighborhood pixels. These are sensitive to
noise ) and less suitable for medical image segmentation.

In classification-based segmentation method, the FCM clustering algorithm % is
more efficient than other hard clustering methods, like k-means algorithm etc. The
FCM algorithm is more reasonable in real applications because it allows pixels to



have relation with multiple clusters with varying degree of memberships. FCM is no
doubt a very popular unsupervised clustering method, but it has some serious
disadvantages due to consideration of the image spatial information. It has another
drawback of local optimal solution due to poor initialization. Many modified fuzzy
clustering approaches have been reported in the past for making the FCM algorithm

more robust to noise and outliers for image segmentation 27,

11

Pedrycz ™ introduced a conditional FCM based clustering method guided by an
auxiliary or conditional variable. The method reveals a structure within a group of
patterns by considering their vicinity in a feature space along with the similarity of
the values assumed by a certain conditional variable. Mohamed et al. ™ modified
the FCM algorithm through the incorporation of the spatial information. They
introduced the spatial information into the computation of similarity measure. The
similarity measure is modified to drag a pixel closure to the cluster center if it is in
homogenous region. The drawbacks of this algorithm are its sensitivity to the non-

descriptive initial clusters and its massive computational loads.

Ahmed et al. ™ introduced the local grey level information by modifying the objective
function with another similarity measure for bias field estimation and segmentation
of MRI data. This method is also expensive in terms of computation time. Many
researchers subsequently modified the objective functions and develop several robust

%2 These algorithms are shown to have

FCM variants for image segmentation !
better performances than the standard FCM algorithm. However, some of these
methods depend on a fixed spatial factor which needs to be adjusted according to
the real applications. In order to overcome the problem of over-smoothed edges, use
of larger spatial window, adaptive selection mechanisms of the spatial parameters

23] The performance of these methods are superior and are able

have been proposed !
to reduce partly the blurring effects which arise due to use of filtering and larger
spatial window. Another major contribution with spatial information into the FCM
membership function was suggested by Chuang et al. ® known as spatial FCM
(sFCM) algorithm. The spatial function is the summation of the membership function
in the neighborhood of each pixel under consideration. It represents the probability
for a pixel to belong into a particular cluster. This spatial function is incorporated
into a weighted membership function. The advantages of this method are, it yields
regions more homogenous than those of other methods and it removes the noisy spots

and partly reduces the spurious blobs.

Recently Qiu et al. P suggested a novel algorithm for fuzzy segmentation by
introducing two fuzzifiers and a spatial constraint in the membership function.

2 presented another improvement of the FCM clustering

Benaichouche et al.
algorithm using PSO, Mahalanobis distance and post segmentation correction. The

first step introduced PSO initialization to overcome the problem of local minima in

23
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the solution, the second step was concerned with the integration of the spatial gray
level information and the Mahalanobis distance and the final step refined the
segmentation results by reallocating the potentially misclassified pixels. Kannan et
al. P! introduced a class of robust non—Euclidean distance measure for the objective
function to enhance the robustness of the original FCM clustering algorithm and to
reduce noise and outliers. Liao et al. ®” proposed a fast-spatial constrained fast kernel
based fuzzy c-means clustering (FKFCM) algorithm for MR brain image
segmentation. The FKFCM algorithm first transforms the pixel intensities into a
higher dimensional space using a kernel trick and then performs classification on the
transformed data.

Selvathi et al. PU presented a modified version of the spatial FCM algorithm to
classify the pixels. Adhikari et al. 2 presented a method for MRI brain image
segmentation by incorporating intensity inhomogeneity and spatial information by
using probabilistic FCM algorithm. The method works in two steps. First it estimates
the intensity inhomogeneity or bias field in the MR medical images. The intensity
inhomogeneity or intensity non-uniformity usually refers to the slow, non-anatomic
intensity variations of the same tissue over the image domain and causes due to
imperfection of the image acquisition devices, eddy current, poor magnetic field and
patient movement etc. Then the inhomogeneity is corrected by using fusion of
suitable Gaussian surfaces which are obtained from calculating the gradient map of
different homogenous regions. After this process the corrected image is segmented
using a modified probabilistic FCM clustering algorithm that takes into consideration
the spatial features of pixels of the image.



Chapter 3:

Proposed Method — Volumetric Brain MR Image
Segmentation using Entropy based Fuzzy
Clustering Algorithm

3.1 Concept

In our proposed method we incorporate Shannon entropy with conventional FCM
algorithm that can effectively segment brain MR images with the presence of noise
and intensity inhomogeneity. Entropy is involved as the dissimilarity among the
pixels in the regions along the edges is very high.

Entropy was first introduced in thermodynamics developing an information
theoretical concept which is closely connected to the internal energy of the system.
It has significant applications in physics, information theory, mathematics and other
branches of science and engineering ®9. Entropy is the measure of the degree of
uncertainty that can be used to characterize the texture of the input image.

34, 46].

Entropy is formulated as follows |

- Z p; X logp; .. (3.1)

where p; is the probability of a given symbol.

There are different kinds of entropies with significant applications. Some of them are
discussed as follows:

25



3.1.1

3.1.2

3.1.3

26

Shannon Entropy

Shannon entropy provides an absolute limit on the best possible lossless

compression of a signal under constraint. It is denoted by Hy(Pmimz) and defined
as 13439

Hy(Prim2) = — Z Pmimz 108 Pmim2 .. (3.2)
mil m2

where p1m2 is the probability density function in 2D random variable P° where
ml,m2 are the two dimensions of measuring.

Rényi entropy

It generalizes the Shannon entropy and is important in quantum information
where it can be used as a measure of entanglement. It is defined as the entropy
of the order of a, where @ = 0 and a # 1, is constructed as B4 %

1
Hr(pmlmz) = 1 — alog § ) 2(pm1m2)a (3-3)
m m

Sadek et al. 9 suggested an efficient and fast entropy-based method for noisy cell
image segmentation based on generalized @ — entropy by measuring the maximum
structural information of the image and locating the optimal threshold desired by
the segmentation. They mentioned that chief advantages of their proposed
methods are its high rapidity and its tolerance to presence of noise in the image.

Harvrda — Charvet

This entropy is used for statistical physics and modified by Dracozy. This can be
identified as the function of a and can be represented in the following

mathematical form B 3

1
Hye(Dmim2) = FZ . Zpgumz -1 - (3.4)
m m



3.1.4 Kapur entropy

This entropy is denoted by Hy(pmimz) of order of @ and type B, is represented

as 134 37,38

-1
Zml Zmz Pﬂﬁlz

Zml Zmz pylillmz

Hk(pmlmz) = < )(Zl_a - 1)_1 (35)

3.1.5 Vajda entropy

It is a special case of Kapur entropy where f = 1 is taken and Vajda measures
H,(Pmimz2)- It is preferred over Kapur entropy as its calculations are faster and
is defined as follows %3

Yim1 Xm2 Pffumz) (21~ — 1)1

H =
e (Pmam2) (Zrm Ym2 Pmimz

.. (3.6)

3.2 Problem Analysis

As MR images are sensitive to noise ) and intensity inhomogeneity, it is very difficult
to achieve effective results. So, to detect diseased regions in MR images, it is
necessary to segment the image into different tissue regions (CSF, GM, WM)
accurately. To improve the robustness of the conventional FCM algorithm we
incorporate Shannon entropy in our proposed method. As entropy is proportional to
uncertainty, our goal is to minimize the entropy to obtain better segmented output.
The proposed method allows to partition the image pixels by calculating the centers
of clusters, v; and the membership matrix, U through minimizing the following
objective function, with respect to these clusters and membership values in an

iterative manner.

] = Z i[auﬁéd?k + (1 - a)PRds] - zc: i Py In(Py,) - (3.7)

c
=1 k=1 i=1 k=1

4

subject to the constraint,
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C
Zﬂjk =1 .. (3.8)
=1

where,
df. = llxe — vl .. (3.9)
Gix
Py = ﬁ .. (3.10)
i=1Ulk
=llx—vill?
e 20}
Gik = — Il —v;l12 (311)

Nk 207
Zl=1/xleNke !

where C is the total number of clusters, N is the number of patterns, a is a parameter
(> 0), m is the fuzzifier (> 1). In our proposed method the value of m has been set
different for different experiments after a thorough comparative analysis (explained
in the next chapter). py, is the degree of fuzzy membership of pixel xj in the i*"
cluster, d? represents the Euclidean distance between the cluster center v; and pixel
Xi, ||*|| is any norm expressing the similarity between any measured data and the
=il

center and — Y YN _ Py In(Py) is the Shannon entropy. e 207 denotes the
Gaussian distance between pixel x;, and cluster center v;. Gy is the ratio of Gaussian
distance of pixel x; with respect to its neighborhood group.

Minimizing the objective function (3.7) with respect to the constraint Y¢_; py = 1,

we obtain

d

. () =0 .. (3.12)
g =0

a—vl(]) = .. (3.13)

Differentiating the equation (3.7) partially with respect to w;,, we get the following
equation:

d
Otk

() = amufy~td — A .. (3.14)



From equation (3.7) and (3.12) we get

amur~td% — 2, =0 - (3.15)
_1
At (3.16)
e = [“mdizkl

Using equation (3.8), Zleujk =1, we get

Cc
Z [amdfkl =1 . (3.17)

j=1
Or,
_1
Al m-—1 _ 1
ma ) = .. (3.18)
]
=1 |dZ,

dizk lm .. (3.19)

Similarly, deriving equation (3.7) partially with respect to v;, we get the following

equation

N . a 5
a_vl(] =kz:[ /,lea (d3) + (1 — Q’)Pik<a(dik>

+(1—C¥)<a (Pl >di2k

N
d 0
- kZzl [(a (Pik)) In Py + Py, (a (In Pik))] - 320)

For solving the equation (3.20), we need to find the derivatives of Py, and d3 and

then use those values as per chain rule of Calculus.

Therefore, upon deriving equation (3.9) we get,
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9]
——(d
ik

aul

= —2lx — vl

(dlk - Zdik

And on deriving equation (3.10) we get,

0 i)
g X dv; (Gae) = G av; (Xi=1 Gu)
Ot (X1 Gu)?
G —v) - pI e, = V)
a_vi(Gik) B g2 ik
l
i (P ) . [(xk - Ui) - Z;Vfl/xﬁ,vk(xl — Ui)] Gik
Olik e al_z Zlc=1 G
Or,
i (Py) = [Co — vo) — G = w16
oJTi te 01'2 ZlC=1 G

N
The term Zl:kl/xleNk(xl -

- (3.21)

- (3.22)

.. (3.23)

- (3.24)

- (3.25)

.. (3.26)

v;) represents the neighborhood of the pixel value with

respect to its cluster center. This has been represented by X; — v, in the equations.

While calculating the neighborhood we have again made a very detailed comparative

analysis that is covered in the following chapter.

From (3.13) and (3.20) we get

N
z _Zaﬂ ki — 2(1 —a)P{;: ik
((du — ) 6

k=1

+m(1—a)P?

ll)le

z (dlk
0; (Zl 1le)

LG |

LA P (L)

o (Xiy Gue)

=0

.. (327)



Using the values from (3.22) and (3.26) in equation (3.27) and simplifying we finally
get the following equation

f(4)
Vi =7 .. (3.28
l lf(B) (3.28)
where f(A) and f(B) are defined as follows
N
1 — a)d3,x,G;
f(a) = Z IZauZéxk +2(1 — a)Px; + ( . )C ek Ttk
k=1 o; (Xi=1 Gue)
(A -a)®diGu | xGuInPy %Gy InPy
O-iz (Zlc=1 le) O-iz (Zlc=1 le) O-iz (Zlc=1 le)
X Gik X1Gig
TREL 6w LG 3.29
of Q=1 Gu)  0f U1 Gue) .. (3.29)
N
1— a)d3G;
f(B) = z lZa,u{ﬁ+2(1—a) f,?+(zcw
k=1 of Ui=1 Gue)
N -)di Gy | Gy lnPy  NiGy InPy
of (Xiz1 Gue) 0? (X G)  0f (X, Gu)
Gik NG
TG, G G, G 3.30
of Qi=1Gu)  0f Q=1 Gue) .. (3.30)

Based on the above derivations we have carried out extensive evaluation and analysis
on both BrainWeb and IBSR dataset followed by test cases on the MR images of
real patients. In all of the tests that we have executed there are various quantitative
evaluation metrics that have been used and they are defined in succession.

3.3 Quantitative Evaluation Metrics

For comparative study quantitative evaluation is essential. We have presented three
types of quantitative evaluation based on

i. Cluster validity functions
ii. Segmentation accuracy

iii. Tissue segmentation accuracy
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The cluster validity functions are presented in terms of

(a)
(b)
(c)

To

3.3.1
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Partition coefficient
Partition entropy
Similarity index

reduce the influence of the selected images, results are

Cluster Validity Functions

(a)  Partition Coefficient (V)

Partition coefficient is one of the most important indicators of fuzzy partition and
provides best performance with less fuzziness when the value of V,. takes its
optimal value as 1, with higher values being “better”. It can be represented as

follows 2527 42

C N 2
Ve = % . (331)

(b)  Partition Entropy (Ve):

Partition entropy is another important indicator of fuzzy partition. To achieve
best clustering the value of V. should be minimal and its value is 0, with higher

values being “better”. It can be defined as follows 1?27 4l:

c N 2 2
- l=12k=llv[ulk log ;] .. (332)

(¢)  Similarity Index (p):

Let for an image with C clusters, if A; and B; represent the set of pixels belonging
to a cluster i in the segmented image and in the “ground truth” image
respectively, then the similarity index p is stated as follows :

Z 24 0Bl | ooy (3.33)



The value of similarity index is ranged in [0,1] and the optimal clustering result is

achieved when p =1, with higher value being “better”. It is a very efficient validity

measurement as it compares the segmentation results with the ground truth. Noise and

inhomogeneity free image is considered here as the ground truth image.

3.3.2

3.3.3

Segmentation Accuracy (SA)

SA is defined as the sum of the correctly classified pixels divided by the sum of

the total number of pixels of the clustered image. It can be represented as follows
6].

= M .. (3.34)
n(G;)

In the above expression, 4; is the set of pixels belonging to the j th cluster found

by the proposed method, C; is the set of pixels of the jt" cluster in the ground

truth image and n(*) represents the cardinality of the set. For an ideal result,

the value of SA will be 1, with higher values being “better”.

Tissue Segmentation Accuracy (TSA)

This is defined as follows ©:

2]VCTK

TSA = ————— .. (3.35
Nerk + Nerk ( )

In the above definition, Norx denotes the number of pixels that are correctly
assigned to tissue k by the proposed method. Nk is the total number of pixels
assigned to tissue k and Ngrg is the number of pixels belonging to tissue k in the
ground truth. For an ideal result, TSA will be 1, with higher values being
“better”.
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Chapter 4:

Experimental Results

The performance of the proposed method is first evaluated on the BrainWeb P dataset
specifically on the simulated T1-weighted images and simulated T2-weighted images
followed by IBSR ) dataset and later on real patient images of human brain in both

quantitative and qualitative manner.

The performance of the proposed method is first examined by changing the neighborhood
values with the fuzziness coefficient (m) from which we conclude the best possible
results. Then it is followed by a comparative study with FCM ¥, FGFCM P4, sFCM P,

ASIFC I PFCM ™ methods.

4.1 Results obtained on BrainWeb Dataset

The BrainWeb simulated T1-weighted and T2-weighted MR images of human brain
are obtained from the McConnell Brain Imaging Center of the Montreal Neurological
Institute, McGill University *!. Ten different combinations of both simulated T1-
weighted and T2-weighted data volumes have been gathered from which test has
been carried out on volumes of 51 (image slice 50 — 100) and 81 (image slice 50 —
130) out of the total volume of 180. All of the image volumes the resolution is 181 X
217 x 181 and the size is Imm X 1lmm X Imm. The image volume contains images

from the following combinations respectively:

1% noise, 20% inhomogeneity
3% noise, 20% inhomogeneity
5% noise, 20% inhomogeneity
7% noise, 20% inhomogeneity
9% noise, 20% inhomogeneity
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1% noise, 40% inhomogeneity
3% noise, 40% inhomogeneity
5% noise, 40% inhomogeneity
7% noise, 40% inhomogeneity
9% noise, 40% inhomogeneity



4.1.1 T1-weighted image volume

First, we present the comparative analysis on all of the above volumes in Figure
4.1 and Figure 4.2 considering cubic neighborhood of 3 X3 X3, 5X5X5, 7X
7 x 7 and 9 X 9 X 9 with fuzziness of 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75 and 3.0;
from which we will be focusing on our best results for further comparison with
previous methods.

Plot for different values of m for image 940, neighbourhood = (3, 5, 7, 9), considering slice = 50-100
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Figure 4.1: Plots of all quantitative metrics for BrainWeb T1-weighted 51 image volume having 9% noise
and 40% inhomogeneity
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Plot for different values of m for image 940, neighbourhood = (3, 5, 7, 9), considering slice = 50-130
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Figure 4.2: Plots of all quantitative metrics for BrainWeb T1-weighted 81 image volume having 9% noise

and 40% inhomogeneity
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Based on the above two Figures 4.1 and 4.2 we can come to the conclusion that
for cubic neighborhood 7 X 7 X 7 and fuzziness value 1.75 the best possible results
can be observed. Hence, we fix these values for the rest of the experiment and
proceed forward with the qualitative results in Figure 4.3 and Figure 4.4 and
quantitative metrics in Table 4.1 and Table 4.2.

In Figure 4.3 the figures (a) to (e) shows the qualitative segmentation results of
the original image, segmented image, CSF segmented image, GM segmented
image, WM segmented image (from left to right) respectively, by the proposed
method on slice 92 of T1-weighted MR image volume having 9% noise, 40%
inhomogeneity. In Figure 4.4 the figures (a) to (e) shows the qualitative
segmentation results of the original 3D image, segmented 3D image, CSF
segmented 3D image, GM segmented 3D image, WM 3D segmented image (from
left to right) respectively, by the proposed method on T1-weighted MR image
volume having 1% noise, 20% inhomogeneity.



(b) (e)
Figure 4.3: (a) to (e) shows the qualitative segmentation results of the original, segmented, CSF, GM,
WM images (from left to right) by the proposed method on T1-weighted MR image volume slice 92 with
9% noise, 40% inhomogeneitly

" " - » "

Figure 4.4: (a) to (e) shows the qualitative segmentation results of the original, segmented, CSF, GM,
WM 3D images (from left to right) by the proposed method on T1-weighted MR image volume with 9%
noise, 40% inhomogeneity
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In the following Table 4.1 we have presented a comparative study with the values
of Segmentation Accuracy (SA) for earlier methods along with our own proposed
method. As we can see our method performs better and is more stable with

increasing noise and inhomogeneity.

Table 4.1: Comparative study of Segmentation Accuracy (SA) for all T1-weighted image volumes

Volumes Segmentation Accuracy (SA)
(Noise% - Regions Proposed
FCM  FGFCM FCM ASIFC ~ PFCM
ITH%) > Method
CSF 0.956 0.938 0.966 0.969 0.961 0.899
1-20 GM 0.922 0.895 0.938 0.942 0.935 0.885

WM 0.966 0.977 0.975 0.978 0.976 0.988

CSF 0.938 0.917 0.944 0.947 0.950 0.896
1-40 GM 0.874 0.853 0.931 0.934 0.875 0.866
WM 0.918 0.959 0.968 0.973 0.940 0.969

CSF 0.930 0.906 0.938 0.942 0.949 0.901
3-20 GM 0.865 0.848 0.927 0.939 0.907 0.882
WM 0.907 0.951 0.956 0.960 0.974 0.986

CSF 0.910 0.893 0.921 0.926 0.925 0.896
340 GM 0.849 0.835 0.922 0.924 0.850 0.863
WM 0.898 0.944 0.947 0.952 0.937 0.966

CSF 0.881 0.861 0.907 0.911 0.907 0.896
520 GM 0.834 0.828 0.916 0.919 0.879 0.874
WM 0.848 0.941 0.938 0.946 0.959 0.982

CSF 0.837 0.832 0.861 0.867 0.875 0.890
5 —40 GM 0.825 0.821 0.909 0.911 0.837 0.856
WM 0.840 0.916 0.926 0.933 0.925 0.962

CSF 0.819 0.816 0.852 0.859 0.836 0.884
7-20 GM 0.818 0.801 0.902 0.907 0.815 0.862
WM 0.829 0.909 0.912 0.918 0.949 0.976

CSF 0.807 0.795 0.849 0.852 0.817 0.879
740 GM 0.782 0.792 0.895 0.989 0.772 0.845
WM 0.795 0.906 0.903 0.908 0.926 0.956

CSF 0.753 0.739 0.827 0.836 0.777 0.859
9-20 GM 0.755 0.736 0.871 0.875 0.762 0.847
WM 0.781 0.873 0.897 0.901 0.932 0.966

CSF 0.742 0.731 0.824 0.829 0.753 0.856
940 GM 0.742 0.725 0.862 0.868 0.737 0.832
WM 0.765 0.876 0.873 0.880 0.914 0.946
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Next in Table 4.2 a comparative study with the values of Tissue Segmentation
Accuracy (TSA) for earlier methods and our own proposed method is presented.
As we can see our method performs better and is more stable with increasing

noise and inhomogeneity.

Table 4.2: Comparative study of Tissue Segmentation Accuracy (TSA) for all T1-weighted image volumes

Volumes Tissue Segmentation Accuracy (TSA)
(Noise% - Regions Proposed
FCM  FGFCM sFCM ASIFC  PFCM
1THY%) i Method
CSF 0.463 0.465 0.652 0.668 0.452 0.598
1-20 GM 0.724 0.720 0.845 0.862 0.720 0.798

WM 0.741 0.738 0.853 0.873 0.741 0.841

CSF 0.458 0.462 0.645 0.657 0.427 0.594
1-40 GM 0.719 0.715 0.837 0.848 0.691 0.780
WM 0.738 0.731 0.851 0.862 0.729 0.828

CSF 0.451 0.458 0.633 0.642 0.451 0.607
3-20 GM 0.717 0.711 0.831 0.843 0.710 0.798
WM 0.735 0.731 0.847 0.858 0.730 0.840

CSF 0.442 0.447 0.623 0.639 0.424 0.602
340 GM 0.698 0.691 0.825 0.836 0.684 0.780
WM 0.724 0.719 0.842 0.854 0.720 0.827

CSF 0.439 0.442 0.615 0.623 0.494 0.610
520 GM 0.693 0.689 0.817 0.829 0.690 0.794
WM 0.716 0.714 0.839 0.846 0.717 0.836

CSF 0.419 0.426 0.609 0.618 0.414 0.605
540 GM 0.678 0.673 0.811 0.825 0.672 0.777
WM 0.714 0.712 0.831 0.842 0.711 0.824

CSF 0.417 0.421 0.602 0.611 0.418 0.609
7-20 GM 0.660 0.654 0.795 0.816 0.651 0.787
WM 0.694 0.691 0.822 0.835 0.690 0.830

CSF 0.390 0.392 0.592 0.601 0.397 0.604
740 GM 0.645 0.637 0.778 0.792 0.629 0.771
WM 0.693 0.689 0.815 0.829 0.684 0.819

CSF 0.377 0.381 0.558 0.579 0.366 0.599
9-20 GM 0.621 0.613 0.762 0.786 0.605 0.778
WM 0.666 0.664 0.808 0.824 0.660 0.822

CSF 0.361 0.372 0.552 0.571 0.358 0.594
940 GM 0.610 0.605 0.751 0.769 0.590 0.763
WM 0.671 0.670 0.792 0.817 0.662 0.811

39



percentage valuess
=] o 0 0 (-]
& u @ v 3

o
e

percentage valuess
w w v [~ =
- ==} w [=} -

v
&

78.5 4

8.0
1.5
7.0

76.5

percentage valuess

75.5

Figure 4.5: Plots of all quantitative
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Based on the experiments the plots for all the quantitative metrics obtained using

our proposed method for all 10 T1-weighted image volumes is shown in Figure

4.5.

Plot for different sets of images taking m = 1.75, neighbourhood = 7

SA of CSF

1
"—— slice = 50-100
_—— slice = 50-130

T
120140320340520540720740920940
sets of images

TSA of CSF

1
—— slice = 50-100
—— slice = 50-130

~
o
o

T T T T
120140320340520540720740920940
sets of images

Si{p)

=
—— slice = 50-100
“—— slice = 50-13¢

T
120140320340520540720740920940
sets of images

SA of GM

T |
__—— slice = 50-100
—— slice = 50-130

percentage valuess

T T
120140320340520540720740920940
sets of images

TSA of GM

percentage valuess

—— slice = 50-100

: —— ——
120140320340520540720740920940
sets of images

—— slice = 50-100
- —=— slice = 50-130

87

percentage valuess

@
S
L

T
120140320340520540720740920940
sets of images

—— slice = 50-130 §

SA of WM
] N O WS S B 1
% i T —— slice = 50-100
o ! —— slice = 50-130
@ 98 . ; -
S j ' H P
3 ' H b
> |
o 97 4
o
b}
G 96 -
=
a
a
95 4 -
T
120140320340520540720740920940
sets of images
TSA of WM
|
84.0 -~ —e— slice = 50-100
8 835 —— slice = 50-130
S
w
>
]
o
2
c
@
=
o
a

percentage valuess

— T T
120140320340520540720740920940
sets of images

#~ —— slice = 50-100
. —— slice = 50-130

o
-3
L

N
i
L

T
120140320340520540720740920940
sets of images

metrics for all BrainWeb T1-weighted image volumes



4.1.2 T2-weighted image volume

Here, we have shown the comparative analysis on all of the earlier mentioned
volumes in Figure 4.6 and Figure 4.7 considering cubic neighborhood of 3 X 3 X
3, 5xX 5% 5, and 7 X7 X 7 with fuzziness of 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75
and 3.0; from which we will be focusing on our best results for further comparison
with previous methods.

Plot for different values of m for image 940, neighbourhood = (3, 5, 7), considering slice = 50-100
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Figure 4.6: Plots of all quantitative metrics for BrainWeb T2-weighted 51 image volume having 9% noise
and 40% inhomogeneity
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Figure 4.7: Plots of all quantitative metrics for BrainWeb T2-weighted 81 image volume having 9% noise

and 40% inhomogeneity
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Based on the above two Figures 4.6 and 4.7 we can come to the conclusion that
for cubic neighborhood 5 X 5 X 5 and fuzziness value 1.5 the best possible results
can be observed. Hence, we fix these values for the rest of the experiment and
proceed forward with the qualitative results in Figure 4.8 and Figure 4.9 and
quantitative metrics in Table 4.3.

In Figure 4.8 the figures (a) to (e) shows the qualitative segmentation results of
the original image, segmented image, CSF segmented image, GM segmented
image, WM segmented image (from left to right) respectively, by the proposed
method on slice 92 of T2-weighted MR image volume having 9% noise, 40%
inhomogeneity. In Figure 4.9 the figures (a) to (e) shows the qualitative
segmentation results of the original 3D image, segmented 3D image, CSF
segmented 3D image, GM segmented 3D image, WM 3D segmented image (from
left to right) respectively, by the proposed method on T2-weighted MR image
volume having 1% noise, 20% inhomogeneity.



(b) (e)
Figure 4.8: (a) to (e) shows the qualitative segmentation results of the original, segmented, CSF, GM,
WM images (from left to right) by the proposed method on T2-weighted MR image volume slice 92 with
9% noise, 40% inhomogeneitly

N 'S " — " — "

Figure 4.9: (a) to (e) shows the qualitative segmentation results of the original, segmented, CSF, GM,
WM images (from left to right) by the proposed method on T2-weighted MR image volume with 1% noise,
20% inhomogeneity
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In Table 4.3 the values of Segmentation Accuracy (SA) and Tissue Segmentation
Accuracy (TSA) for our proposed method is shown. We can see our method is
stable with increasing noise and inhomogeneity.

Table 4.3: Results of Segmentation Accuracy (SA) and Tissue Segmentation Accuracy (TSA) for all

T2-weighted image volumes

Tissue Segmentation

Volumes . Segmentation Accuracy
(Noise% - ITH%) Regions (SA) of proposed method Accuracy (TSA) of
proposed method
CSF 0.971 0.684
1-20 GM 0.863 0.794
WM 0.972 0.709
CSF 0.959 0.701
1-40 GM 0.847 0.778
WM 0.953 0.693
CSF 0.967 0.686
3-20 GM 0.837 0.778
WM 0.968 0.706
CSF 0.954 0.704
3 —40 GM 0.821 0.762
WM 0.953 0.691
CSF 0.960 0.689
5-20 GM 0.799 0.752
WM 0.958 0.693
CSF 0.945 0.707
540 GM 0.783 0.736
WM 0.947 0.679
CSF 0.949 0.692
7-20 GM 0.754 0.718
WM 0.944 0.675
CSF 0.933 0.711
7—40 GM 0.741 0.705
WM 0.935 0.664
CSF 0.937 0.693
9-20 GM 0.709 0.681
WM 0.915 0.650
CSF 0.917 0.712
9 —40 GM 0.695 0.668
WM 0.908 0.640

44



Based on the experiments the plots for all the quantitative metrics obtained using
our proposed method for all 10 T2-weighted image volumes is shown in Figure

Plot for different sets of images taking m = 1.5, neighbourhood =5
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Figure 4.10: Plots of all quantitative metrics for all BrainWeb T2-weighted image volumes

4.2 Results obtained on IBSR dataset

IBSR was originally supported by the NIH from the National Institute of Neurological
Disorders and Stroke (NINDS). This grant funds research in MR brain segmentation
by researchers at Boston University, Draper Laboratory, Northeastern University,
Massachusetts Institute of Technology, and Massachusetts General Hospital /
Harvard Medical School. Since the original web site is no longer fully functional, all
data has been transferred and hosted at NITRC. However, for this experiment we
have used the earlier data that has been collected.

The test has been carried out on volumes of 30 (image slice 123 — 152) and 40 (image
slice 115 — 154) [only for final analysis in Figure 4.14] out of the total volume of 256.
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All of the image volumes the resolution is 128 X 256 X 256. There are 14 image
volumes out of which we have obtained substantial results for 3 image volumes (1,

3, 5).

First, we present the comparative analysis on all the three volumes in Figure 4.11
considering neighborhood of 3, 5 and 7 with fuzziness of 1.25, 1.5, 1.75, 2.0, 2.25, 2.5,
2.75, 3.0 and 3.25; from this we will be focusing on our best results for further
comparison with previous methods.

Plot for different values of m for IBSR Vol 1, neighbourhood = (3, 5, 7), considering slice = 123-152
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Figure 4.11: Plots of all quantitative metrics for IBSR image volume-1 considering 30 image slice as
volume

Based on the above Figure 4.11 we can come to the conclusion that for neighborhood
5 and fuzziness value 2.5 the best possible results can be observed. Hence, we fix
these values for the rest of the experiment and proceed with the qualitative results
in Figure 4.12 and Figure 4.13 followed by quantitative metrics in Table 4.4 and
Table 4.5.

In Figure 4.1 the figures (a) to (e) shows the qualitative segmentation results of the
original image, segmented image, CSF segmented image, GM segmented image, WM
segmented image (from left to right) respectively, by the proposed method on slice
140 of IBSR image volume 1. In Figure 4.2 the figures (a) to (e) shows the qualitative
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segmentation results of the original 3D image, segmented 3D image, CSF segmented
3D image, GM segmented 3D image, WM 3D segmented image (from left to right)

respectively, by the proposed method on IBSR image volume 1.

(b) (e)
Figure 4.12: (a) to (e) shows the qualitative segmentation results of the original, segmented, CSF, GM,
WM images (from left to right) by the proposed method on volume-1 of IBSR dataset, slice 140

(b) (c) (d) (¢)

Figure 4.13: (a) to (e) shows the qualitative segmentation results of the original, segmented, CSF, GM,
WM images (from left to right) by the proposed method on volume-1 of IBSR dataset

In the following Table 4.4 we have presented a comparative study with the values of
Segmentation Accuracy (SA) for earlier methods along with our own proposed
method for the specified volumes. We can see our method performs in close proximity
or in some cases better in identifying WM specifically.
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Table 4.4: Comparative study of Segmentation Accuracy (SA) for IBSR image volumes

Volumes Segmentation Accuracy (SA)
(Noise% - Regions Proposed
FCM FGFCM sFCM ASIFC PFCM
1THY%) i Method
CSF 0.767 0.752 0.832 0.837 0.726 0.710
Volume 1 GM 0.629 0.613 0.693 0.696 0.620 0.577

WM 0.950 0.948 0.947 0.958 0.955 0.943

CSF 0.756 0.745 0.778 0.782 0.737 0.542
Volume 2 GM 0.748 0.729 0.786 0.793 0.732 0.619
WM 0.944 0.951 0.949 0.956 0.954 0.957

CSF 0.623 0.611 0.631 0.636 0.611 0.478
Volume 5 GM 0.753 0.749 0.827 0.831 0.799 0.631
WM 0.632 0.758 0.753 0.778 0.775 0.964

Next in Table 4.5 a comparative study with the values of Tissue Segmentation
Accuracy (TSA) for earlier methods and our own proposed method is presented. We
can see our method performs in close proximity or in some cases better in identifying
GM and WM specifically.

Table 4.5: Comparative study of Tissue Segmentation Accuracy (TSA) for IBSR image volumes

Volumes Tissue Segmentation Accuracy (TSA)
(Noise% - Regions Proposed
FCM  FGFCM FCM ASIFC ~ PFCM
ITH%) i Method
CSF 0.534 0.537 0.601 0.620 0.633 0.299
Volume 1 GM 0.622 0.619 0.412 0.738 0.608 0.703

WM 0.664 0.657 0.476 0.779 0.650 0.793

CSF 0.630 0.633 0.711 0.731 0.629 0.253
Volume 2 GM 0.651 0.642 0.724 0.758 0.640 0.736
WM 0.707 0.689 0.721 0.740 0.701 0.826

CSF 0.528 0.538 0.543 0.562 0.569 0.245
Volume 5 GM 0.646 0.632 0.710 0.731 0.733 0.742
WM 0.621 0.618 0.653 0.689 0.681 0.818

Based on the experiments the plots for all the quantitative metrics obtained using
our proposed method for the 3 IBSR image volumes is shown in Figure 4.14. It should
be noted that the total average is considered for image volume of 40 (image slice 115
— 154).
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Plot for different sets of images taking m = 2.5, neighbourhood =5
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Figure 4.14: Plots of all quantitative metrics for IBSR image volume 1, 2 and 5

4.3

Results obtained on images of real-patient data

We have examined the performance of the proposal method on the image volumes

constructed from of all real-patient MR image data which are collected from the
Advanced Medical Research Institute (AMRI) Hospital, Kolkata, India and EKO X-

RAY & IMAGING INSTITUTE, Kolkata,

India. As the ground truth of

segmentation for real-patient MRI images is not usually available, thereby the

performance of the proposed method on the real-patient MR data is evaluated first

qualitatively and later quantitatively in terms of cluster validity functions.

4.3.1

Real patient 1

First, we present the qualitative results of the patient 1 in 2D format in Figure
4.15 and 3D format in Figure 4.16, followed by a small analysis of how the
Partition Coefficient (%C) and Partition Entropy (Vpe) varies with different

values of neighborhood and fuzziness in Figure 4.17.
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(v) () ()
Figure 4.15: (a) to (e) shows qualitative segmentation results of the original, segmented, CSF, GM, WM
images (from left to right) of real patient 1 by the proposed method

Figure 4.16: (a) to (e) shows qualitative segmentation results of the original, segmented, CSF, GM, WM
3D images (from left to right) of real patient 1 by the proposed method
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percentage valuess

Plot for different values of m for patient 1, neighbourhood = (3, 5, 7)
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Figure 4.17: Plots for Ve and V,, for patient 1.

4.3.2

From the qualitative analysis in Figure 4.15 and Figure 4.16 we can say that we
have obtained superior results on the images of real patient 1. By observing the
graphs in Figure 4.17 it can stated that algorithm that for lower values of degree
of fuzziness we have reported higher result in V,. and V..

Real patient 2

First, we present the qualitative results of the patient 2 in 2D format in Figure
4.18 and 3D format in Figure 4.19, followed by a small analysis of how the
Partition Coefficient (Vpc) and Partition Entropy (Vpe) varies with different

values of neighborhood and fuzziness in Figure 4.20.

51



(b)
Figure 4.18: (a) to (e) shows qualitative segmentation results of the original, segmented, CSF, GM, WM
images (from left to right) of real patient 2 by the proposed method

(b)

Figure 4.19: (a) to (e) shows qualitative segmentation results of the original, segmented, CSF, GM, WM

3D images (from left to right) of real patient 2 by the proposed method
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percentage valuess

Plot for different values of m for patient 2, neighbourhood = (3, 5, 7)
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Figure 4.20: Plots for Ve and V,, for patient 2.

4.3.3

From the qualitative analysis in Figure 4.18 and Figure 4.19 we can say that we
have obtained superior results on the images of real patient 2. By observing the
graphs in Figure 4.20 it can stated that algorithm that for lower values of degree

of fuzziness we have reported higher result in V. and V..

Real patient 3

First, we present the qualitative results of the patient 3 in 2D format in Figure

4.21 and 3D format in Figure 4.22, followed by a small analysis of how the
Partition Coefficient (Vpc) and Partition Entropy (Vpe) varies with different

values of neighborhood and fuzziness in Figure 4.23.

(b) @) o

Figure 4.21: (a) to (e) shows qualitative segmentation results of the original, segmented, CSF, GM, WM

images (from left to right) of real patient 3 by the proposed method
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Figure 4.22: (a) to (e) shows qualilative segmentation results of the original, segmented, CSF, GM, WM
3D images (from left to right) of real patient 3 by the proposed method
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Figure 4.23: Plots for Voo and V,, for patient 3.
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From the qualitative analysis in Figure 4.21 and Figure 4.22 we can say that we
have obtained superior results on the images of real patient 3. By observing the
graphs in Figure 4.23 it can stated that algorithm that for lower values of degree



4.3.4 Real patient 4

First, we present the qualitative results of the patient 4 in 2D format in Figure
4.24 and 3D format in Figure 4.25, followed by a small analysis of how the
Partition Coefficient (Vpc) and Partition Entropy (Vpe) varies with different

values of neighborhood and fuzziness in Figure 4.26.

(b)
Figure 4.24: (a) to (e) shows qualitative segmentation results of the original, segmented, CSF, GM, WM
images (from left to right) of real patient 4 by the proposed method
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Figure 4.25: (a) to (e) shows qualitative segmentation results of the original, segmented, CSF, GM, WM
3D images (from left to right) of real patient 4 by the proposed method
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Figure 4.26: Plots for V,c and Ve for patient 4.

From the qualitative analysis in Figure 4.24 and Figure 4.25 we can say that we
have obtained superior results on the images of real patient 4. By observing the
graphs in Figure 4.26 it can stated that algorithm that for lower values of degree
of fuzziness we have reported higher result in V. and V..
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A final comparison of the Partition Coefficient (I/;,C) and Partition Entropy (Vpe)

between previous methods and our own methods is shown in the following Table 4.6.
The best results that can be observed from the graphs 4.17, 4.20, 4.23 and 4.26 is

taken into consideration and recorded in the table below.

We can observe that our proposed method gives superior results for all the test cases

on real patient images across the board.

Table 4.6: Comparative study of Vy

and Vye for all real patient images

Volume Method Voe Voe
FCM 0.705 0.558
FGFCM 0.815 0.329
Real patient 1 sFCM 0.886 0.294
(Male) ASIFC 0.911 0.206
PFCM 0.924 0.137
Proposed Method 0.956 0.074
FCM 0.791 0.253
FGFCM 0.811 0.159
Real patient 2 sFCM 0.835 0.074
(Female) ASIFC 0.897 0.053
PFCM 0.905 0.087
Proposed Method 0.978 0.038
FCM 0.741 0.507
FGFCM 0.852 0.287
Real patient 3 sFCM 0.883 0.228
(Female) ASIFC 0.912 0.196
PFCM 0.921 0.129
Proposed Method 0.983 0.028
FCM 0.870 0.273
FGFCM 0.893 0.193
Real patient 4 sFCM 0.907 0.178
(Female) ASIFC 0.922 0.143
PFCM 0.935 0.112
Proposed Method 0.974 0.044
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Chapter 5:

Conclusion and Future Scope

In this thesis entitled “Volumetric Brain MR Image Segmentation using Entropy based
Fuzzy Clustering Algorithm” an image segmentation method has been presented
involving Shannon entropy to improve the robustness to the noise and intensity
inhomogeneity. This proposed method has been examined extensively both in qualitative
and quantitative manner and has been compared with previous algorithms. From the
experimental results it is clear that with proper parameters of neighborhood and
fuzziness the results are definitely better. Also, the proposed method is tolerant to noise
and intensity inhomogeneity and thereby can produce superior results irrespective of the

aforementioned hurdle.
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